
Fast Local Page-Tables for Virtualized NUMA Servers with vMitosis
Extended Abstract

A. Panwar1, R. Achermann2, A. Basu1, A. Bhattacharjee3, K. Gopinath1, J. Gandhi4
1IISc Bangalore 2ETH Zurich & University of British Columbia 3Yale University 4VMware Research

Applications suffer non-uniform memory access (NUMA)
latencies on modern multi-tier memory systems. As computer
systems embrace extreme heterogeneity in the memory system,
with innovations in die-stacked DRAM, high-bandwidth HBM,
more socket counts, multi-chip module-based designs, the
speed differences between local and remote memory continue
to grow and become more complex to reason about [10, 13].
Placing, replicating, and migrating data among memory de-
vices with variable latency and bandwidth is of paramount
importance to the success of these technologies, and much
work remains to be done on these topics. However, while
there is at least prior work on data placement for application
pages [2, 5, 7, 9, 12], kernel data structures have largely been
ignored from this discussion. This is because kernel data has
long been considered not to be crucial for performance – most
kernel objects are pinned and unmovable in typical OS de-
signs [11] – but we argue that this is no longer the case. This
paper focuses on one critical kernel data structure, the page-
table, and shows that virtualized NUMA servers must carefully
reason about its placement for overall system performance.
Why focus on page-tables? Page-tables are vital to overall
system performance. First, big-memory workloads require
DRAM accesses on frequent page-table walks due to high
TLB miss rates [3, 8, 4]. As system memory capacities grow
to meet ever-increasing workload data demand, page-table
growth is outstripping that of hardware TLBs. Larger address
spaces require additional levels in page-tables (e.g., Intel’s 5-
level page-tables). TLB misses under virtualization are already
expensive–a 2D page-table walk requires up to 24 memory
accesses that will increase to 35 with 5-level page-tables. Fi-
nally, the page-table walk does not benefit from memory-level
parallelism as they are an inherently serial process–each long
DRAM access adds latency to address translation [4]. We
show that misplacement of guest page-tables (gPT) and ex-
tended page-tables (ePT) is common in virtualized servers and
explore techniques to improve their access locality.
Contribution 1: We provide an in-depth analysis of the mis-
placement of both levels of page-tables and its impact on
page-table walks in virtualized NUMA systems. We partition
several workloads into two groups: Thin workloads execute
within a single NUMA socket (using up to 48 threads and
340GB of memory), and Wide workloads use the entire phys-
ical server (with 192 threads and up to 1.3TB of memory).
We classify virtual machines (VMs) into two configurations:
NUMA-visible mirrors the underlying server’s NUMA topol-
ogy for the guest OS, and NUMA-oblivious hides the NUMA
topology from the guest OS. We summarize key observations
from our analysis:

Observation 1: VM/workload migration has enduring perfor-
mance implications on Thin workloads; while data pages mi-
grate along with the thread, page-tables do not. The latency
of remote page-table accesses is exacerbated by memory con-
tention from other co-running workloads. We demonstrate
this with a Memcached server instance that we migrate to a
different socket during its execution. One would expect the
server to fully recover its performance after the migration
has been completed, i.e., when its data pages migrated to the
new socket. However, we show that Memcached permanently
loses as much as 50% performance post-migration. In the
worst-case, migration can cause as much as a 3.1× slowdown.
Observation 2: ePT becomes remote even in the absence of
migration. This effect is observed when ePT is allocated by
one virtual CPU (vCPU) but later used to translate addresses by
another vCPU running on a different socket. Note that address
translation on all vCPUs for a VM is performed with the same
ePT. Consequently, even if the hypervisor honors local ePT
placement, two workloads running in a VM will interfere with
each other despite being partitioned using state-of-the-art CPU
and memory binding techniques, due to a shared ePT.
Observation 3: Wide workloads that span multiple NUMA
sockets are fundamentally susceptible to remote page walks–
in a system with N NUMA sockets, each page-table entry
(PTE) is local to one and remote to the other N-1 sockets.
Assuming a random distribution of PTEs, the probability of a
2D page-table walk resulting in local DRAM access for both
gPT and ePT is only (1/N)2. Hence on our 4-socket system,
we expect only about (1/4)2 = 1/16 ≈ 6% page-table walks
to be served from local DRAM. Our offline analysis of page-
table placement using page-table dumps and a software 2D
page-table walker shows that virtualized page-table walks for
most workloads closely resemble these expected local/remote
access ratios. The fraction of local page-table walk access
is much lower for NUMA-oblivious VMs as compared to
NUMA-visible VMs since the guest OS is unable to optimize
the placement of data structures in this case.
Observation-4: Large pages can reduce NUMA effects on
address translation due to fewer TLB misses and shorter page-
table walks. However, we still observe considerable NUMA
effects for some important workloads (e.g., Redis). Further,
large pages are responsible for many performance anomalies,
including memory bloat (on our system, it leads to out-of-
memory for some workloads, e.g., Memcached), latency, and
OS jitters. Memory fragmentation also limits the OS’s ability
to allocate large pages over time. In conclusion, while im-
portant under ideal conditions, large pages cannot always be
relied upon to eliminate NUMA effects on page-table walks.

Contribution 2: We design a system, vMitosis, that provides
mechanisms and policies to mitigate NUMA effects on page-
table walks for VMs. Our design relies on migration and
replication of page-tables to ensure that TLB misses are al-
ways served locally. In vMitosis, under the NUMA-visible
configuration, the hypervisor and the guest OS independently
deploy NUMA optimizations for their page-tables. For the
NUMA-oblivious configuration, we propose two techniques
to enable gPT replication. Our first technique is based on para-
virtualization in which the hypervisor communicates NUMA
topology to the guest OS. Our second technique that is fully-
virtualized implements gPT replication by reverse-engineering
the physical server’s NUMA topology in the guest OS.
Contribution 3: We provide an implementation of vMitosis
in Linux/KVM. First, we integrate our gPT and ePT migration
with the data-page migration mechanism (AutoNUMA [6]).
Second, we implement replication of ePT for VMs spanning
multiple NUMA sockets. And, to enable gPT replication in
the NUMA-visible configuration, we leverage the open-source
Mitosis implementation [1]. Third, we implement the two
NUMA-oblivious techniques for gPT replication: 1) a hyper-
call API that the guest uses to allocate and manage the gPT in
co-operation with the hypervisor. 2) a tool to reverse engineer
the NUMA topology using online measurements of core-to-
core communication latency. The discovered NUMA topology
by vMitosis exactly mirrors the physical server topology. Us-
ing this tool, we can implement NUMA optimizations inside
a NUMA-oblivious VM without any hypervisor support.
Closely Related Work: Our previous work, Mitosis, showed
the importance of page-table placement on bare-metal NUMA
machines [1]. We earlier showed how remote page-table walks
impact performance and proposed replication of page-tables to
mitigate NUMA effects on address translation for native exe-
cution. In contrast, vMitosis introduces incremental migration
of page-tables instead of replication-based migration in Mito-
sis to have a robust design. Moreover, vMitosis introduces two
new techniques to support NUMA-oblivious configurations
(not supported by Mitosis) that serves as the basis of placing
kernel data structures in heterogeneous memory systems. Ta-
ble 1 shows that vMitosis is the first system to support NUMA
optimizations for 2D page-tables in virtualized environments.
Challenges: Our design and implementation are non-trivial
due to the following challenges. First, the NUMA topology
required for replication is not always available under virtual-
ization (e.g., in the NUMA-oblivious configuration). Second,

System Guest Page-Tables Extended Page-Tables
Migration Replication Migration Replication

Linux/KVM No No No No
Mitosis via Replication* Yes* No No
vMitosis Yes Yes Yes Yes

Table 1: NUMA support for page-tables in current systems. (*)
Replication is possible in Mitosis only if the server’s NUMA
topology is exposed to the guest OS.

0

0.2

0.4

0.6

0.8

1

Memcached Average Memcached Average

Thin workloads Wide workloads

N
o
rm

a
liz

e
d
 R

u
n
ti
m

e Linux/KVM vMitosis

Socket 0 1 Socket 0 1 2 3
gPT-Local 100% 0% gPT-Local 14% 15% 15% 56%
ePT-Local 100% 0% ePT-Local 11% 0% 89% 0%
2D -Local 100% 0% 2D -Local 0% 0% 16% 0%

2
.4
1
x

2
.3
4
x 1
.3
2
x

1
.1
8
x

Thin workloads Wide workloads

Figure 1: Normalized runtime with and without vMitosis. Table
at the top represents the fraction of page-table entries local to
different sockets involved in the execution of Memcached.

PTEs contain physical addresses of next level page-table or
data pages that make a bit-by-bit copy (like data pages) infeasi-
ble and require the construction of a new page-table that points
to the destination NUMA socket. Finally, the access and dirty
bits updated by the hardware in both gPT and ePT must be
consistent when multiple copies of the page-table exist.

Contribution 4: Finally, we present a comprehensive eval-
uation of vMitosis on a recent Intel Cascade Lake 4-socket
NUMA server with 1.5TB RAM running Linux with KVM hy-
pervisor as the baseline system. Figure 1 provides a summary
of the results showing the normalized runtime of vMitosis over
the baseline. We include the average over all workloads with
Memcached as a representative workload. The table at the top
shows the fraction of page-table walk accesses serviced from
local DRAM for different sockets for Memcached. Under Thin
workloads, threads run on socket-1 (post-migration) while gPT
and ePT remain on socket-0. This leads to all-remote page-
table accesses. In this case, vMitosis provides 2.41× speedup
for Memcached and 1.8− 3.1× overall (2.34× on average).
For the Wide workloads, threads running on all sockets expe-
rience remote DRAM accesses during a 2D page-table walk,
only a small fraction are local. We obtain a 1.16× speedup for
Memcached and 1.06−1.6× overall (1.34× on average).

Why ASPLOS? vMitosis explores various migration and repli-
cation strategies for two-dimensional page-tables on virtual-
ized NUMA servers to eliminate high latency page walk ac-
cesses. Therefore, our system design interacts with computer
architecture, operating systems and virtualization. We believe
it fits well in ASPLOS due to its multi-disciplinary research
focus, and our discussions on the impact of kernel object’s
access latency will be interesting for the community.

Long Term Impact: We show that current OSes are missing
NUMA optimizations for performance-critical dynamic kernel
data-structures. The placement of frequently-accessed kernel
data-structures in virtualized OSes, as demonstrated by page-
tables, is important as technology trends continue to move
towards heterogeneity and tiered memory systems. Our work
is going to be released in a commercial hypervisor and would
be open-sourced for Linux/KVM.

2

References
[1] Reto Achermann, Ashish Panwar, Abhishek Bhattacharjee, Timothy

Roscoe, and Jayneel Gandhi. Mitosis: Transparently self-replicating
page-tables for large-memory machines. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS ’20, page 283–300,
Lausanne, Switzerland, 2020.

[2] Neha Agarwal and Thomas F. Wenisch. Thermostat: Application-
transparent page management for two-tiered main memory. In Pro-
ceedings of the Twenty-Second International Conference on Architec-
tural Support for Programming Languages and Operating Systems,
ASPLOS ’17, page 631–644, Xi’an, China, 2017.

[3] Hanna Alam, Tianhao Zhang, Mattan Erez, and Yoav Etsion. Do-it-
yourself virtual memory translation. In Proceedings of the 44th Annual
International Symposium on Computer Architecture, ISCA ’17, pages
457–468, Toronto, ON, Canada, 2017.

[4] Abhishek Bhattacharjee. Translation-Triggered Prefetching. In Pro-
ceedings of the Twenty-Second International Conference on Architec-
tural Support for Programming Languages and Operating Systems,
ASPLOS ’17, pages 63–76, Xi’an, China, 2017.

[5] Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, and Marcos K.
Aguilera. Black-box Concurrent Data Structures for NUMA Architec-
tures. In Proceedings of the Twenty-Second International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’17, pages 207–221, Xi’an, China, 2017.

[6] Jonathan Corbet. AutoNUMA: the other approach to NUMA schedul-
ing. https://lwn.net/Articles/488709/, 2012.

[7] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud,
Renaud Lachaize, Baptiste Lepers, Vivien Quema, and Mark Roth.
Traffic Management: A Holistic Approach to Memory Placement
on NUMA Systems. In Proceedings of the Eighteenth International

Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’13, pages 381–394, Houston, Texas,
USA, 2013.

[8] Jayneel Gandhi, Mark D. Hill, and Michael M. Swift. Agile Paging:
Exceeding the Best of Nested and Shadow Paging. In Proceedings of
the 43rd International Symposium on Computer Architecture, ISCA
’16, pages 707–718, Seoul, Republic of Korea, 2016.

[9] Sudarsun Kannan, Ada Gavrilovska, Vishal Gupta, and Karsten
Schwan. Heteroos: Os design for heterogeneous memory management
in datacenter. In Proceedings of the 44th Annual International Sym-
posium on Computer Architecture, ISCA ’17, page 521–534, Toronto,
ON, Canada, 2017.

[10] Jeffrey C. Mogul, Eduardo Argollo, Mehul Shah, and Paolo Faraboschi.
Operating system support for nvm+dram hybrid main memory. In Pro-
ceedings of the 12th Conference on Hot Topics in Operating Systems,
HotOS’09, page 14, Monte Verità, Switzerland, 2009.

[11] Ashish Panwar, Aravinda Prasad, and K. Gopinath. Making huge
pages actually useful. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’18, pages 679–692, Williamsburg, VA,
USA, 2018.

[12] Luiz E. Ramos, Eugene Gorbatov, and Ricardo Bianchini. Page place-
ment in hybrid memory systems. In Proceedings of the International
Conference on Supercomputing, ICS ’11, page 85–95, Tucson, Arizona,
USA, 2011.

[13] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee.
Nimble page management for tiered memory systems. In Proceedings
of the Twenty-Fourth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS
’19, page 331–345, Providence, RI, USA, 2019.

3

https://lwn.net/Articles/488709/

